当前位置:无忧公文网 >范文大全 > 征文 > 微分方程在一阶线性电路暂态分析中的应用

微分方程在一阶线性电路暂态分析中的应用

时间:2022-03-21 08:19:15 浏览次数:

摘要:本文以一阶线性RC电路和一阶线性RL电路在接通或断开直流电源的暂态过程为例,阐述如何运用微分方程解决一阶线性电路暂态过程中的实际问题。

关键词:微分方程;电路;暂态过程;应用

一、一阶线性微分方程及其通解

含有未知函数导数(或微分)的方程叫做微分方程,未知函数是一元的微分方程叫常微分方程,微分方程中未知函数的导数的最高阶数为一阶的微分方程叫一阶微分方程。本文所提到的微分方程均指一阶常微分方程。一阶微分方程的一般形式

y"+P(x)y=Q(x)

通解为y=e■[C+■Q(x)e■dx](C为常数)

特殊地,当Q(x)≡0时,方程变为y"+P(x)y=0称为一阶齐次线性微分方程,通解为y=Ce■(C为常数)。当Q(x)≡B(常数)时,方程变为y"+P(x)y=B,通解为e■[C+B■e■dx](C为常数)。在直流电源激励下一阶线性电路的暂态过程分析中,主要就是用这两个方程的通解得到电路的响应公式。

二、一阶线性电路的暂态过程

只含有一个储能元件(电容器或者电感线圈)或可等效为为一个储能元件的线性电路,不论是简单的还是复杂的,它的都是一阶常系数微分方程,这种电路叫做一阶线性微分电路。含有电容器和线圈的线性电路中,由于储能元件电容器和电感线圈的能量的变化是连续的,因此,在接通或断开线性电路时,电容器的端电压和电感中的电流均不能跃变,而是随时间变化的,这一变化时间是暂短的,我们把这个暂短的变化过程,也就是过渡过程,叫做暂态过程。

如图(1)所示,如果将两只同样的白炽灯泡EL1、EL2分别与电容器C、电感线圈L串联,然后一起并联在电路中。开关S原来处于断开状态,当开关S合上时,就会看到在外加直流电源的作用下,白炽灯EL1在开关S闭合瞬间突然闪亮了一下,随着时间的延迟逐渐暗下去,直到完全熄灭;白炽灯EL2由暗逐渐变亮,最后稳定发光。

为什么两只相同的白炽灯泡在开关闭合时出现了两种不同的发光现象呢?其实在图(1)中两只灯泡分别与电容器和电感线圈串联,分别构成了RC串联电路和RL串联电路。上述现象反映了在开关闭合(换路)时,RC电路、RL电路不同的响应。这是因为开关S原来是断开的,电路中电容的端电压和通过电感的电流均为零,两个灯泡都不亮,电路处于一种稳定状态。合上开关S以后,电路经历了一个短暂的过程,电容支路电流变为零,电感支路中的电流达到一个恒定值,电路处于另一种稳定状态。

那么电路从原来的稳定状态到另一种稳定状态的变化过程中,电容器的端电压和电感中的电流的时间函数关系如何?决定暂态过程快慢的因素又是什么?下面分别以RC线性电路和RL线性电路在直流电源激励下的暂态过程进行定量分析。

线性电路分析的理论依据:线性电路暂态过程虽然短暂,但是分析电路的暂态过程涉及的知识面比较广泛,既需要有一定的电学基础知识,又需要有一定的高等数学基础知识。在电学方面,电路中瞬时电流等于通过导体截面的电量对时间的导数,即i=■。电阻元件两端的电压与通过导体的电流成正比,即uR=iR。电感线圈两端的电压与导体中的电流的变化率成正比,即uL=L■。电容元件储存的能量与它两端电压的平方成正比,即EC=■Cuc2。电感线圈储存的能量与线圈中电流的平方,即EL=■LiL2。这些基本知识是定量分析线性电路的基础。基尔霍夫闭合回路电压定律、欧姆定理、换路定律是建立电路微分方程的依据。微积分的基本计算、解一阶线性微分方程是分析线性电路暂态过程的数学工具,。

线性电路分析的基本思路:首先,由于电路的暂态过程是一个短暂的变化过程,变化前电路处于稳定状态,变化后电路处于另一个稳定状态。为了论述的方便,我们把变化前电路的稳定状态叫做原稳态,用t=0-表示。把变化后的电路的稳定状态叫做新稳态,用t=∞表示。用t=0+表示暂态过程的起始时刻。其次,我们以相关电学知识为基础,以基尔霍夫回路电压定律为依据,列回路的电压方程,建立电路的微分方程。最后,通过求解电路的微分方程,得出回路电流或电压的时间函数关系。

三、线性电路暂态过程的分析

(一)RC电路暂态过程

1.微分方程的建立。如图(2)所示,电路中的直流电源电压为U,电阻为R,电容为C。接通开关到1位置,分析电路中电容端电压随时间的变化规律。

以换路瞬间作为计时起点,令此时t=0。

设当t≥0时,电路中的电流为i,电容端电压为uC,电阻的端电压为uR。根据基尔霍夫回路电压定律,可以知道uC+uR=U,而i=C■,uR=iR。因此uC满足微分方程

RC■+uC=U。

2.电路中的电源为直流电源,电源的电压U一定,此方程的通解为uC=U-Ae■,A为常数。

式中RC为电路的时间常数,用?子表示。这样,方程的通解可以表示为uC=U-Ae■■

3.RC串联电路的三种暂态过程讨论。

(1)RC串联电路的零状态响应。将图(2)中的开关S合到1位置。直流电源开始给电容器充电,电源电压U=恒量,充电前电容端电压为零。根据换路定律,可知t=0时,uC=0。将初始条件uC|t=0=0,代入uC=U-Ae■■,得A=U。于是有uC=U(1-e■)。

这就是RC电路的零状态响应公式。

(2)RC串联电路的零输入响应。图(2)中的开关S在1位置且电路稳定后,将开关S从1位置合到2位置,电容器开始放电。这时,电路与电源断开,可以认为RC回路的电源电压为零,电容开始放电。电容放电前两端电压为U0。根据换路定律,可知t=0时,uC=U0。将初始条件uC|t=0=U0以及U=0代入uC=U-Ae■■,得A=U0。

于是uC=U0e■。这就是RC电路的零输入响应公式。

(3)RC串联电路的全响应。如图(3),开关S在1位置且电路稳定后,将开关S从1位置合到2位置。这时,电容的端电压初始值和闭合回路中的电源电压均不为零。换路后RC回路电源电压为U,电容两端的电压的初始值为U0。即t=0时,uC=U0。将uC|t=0=U0代入uC=U-Ae■■得uC=U+(U0-U)e■■或uC=U+(1-e■)+U0e■■ 这就是RC电路暂态过程的全响应公式。

4.RC电路对矩形输入脉冲电压波形的改变。输入微分电路和积分电路暂态

(二)RL电路的暂态过程

1.RL电路微分方程的建立。如图(4)所示,电路中的直流电源电压为U,电阻为R,电感为L 。仍然以换路瞬间作为计时起点,令此时t=0。当t≥0时,根据闭合回路电压定律,可以知道uL+iLR=U。

而uL=L■。于是L■+RiL=U。

2.RC电路微分方程的通解iL=■-Ae■。式中的■叫做RL电路的时间常数,用?子表示。

于是iL=■-Ae■■

3.RL串联电路的三种暂态过程的讨论。

(1)RL串联电路零状态响应。将图(3)中断开的开关S合到1位置,RL串联电路与直流电源接通。根据换路定律,t=0时,iL=0,即iL|t=0=0。将初始条件iL|t=0=0,代入iL=■-Ae■■,得A=■。于是得出RL串联电路零状态响应公式iL=■-■e■■或者iL=■(1-e■■)

(2)RL串联电路零输入响应。当图(4)电路中的开关S在1位置,且电路稳定,电路中电流为I0时,把开关S从1位置合到2位置。换路后回路中的电源电压为零。根据换路定律可知iL(0+)=iL(0-)=I0,即iL|t=0=I0。将初始条件iL|t=0=I0和U=0代入iL=■-Ae■■,得A=I0。

于是得出RL串联电路零输入响应公式iL=I0e■

(3)RL串联电路全响应。如图(5)所示,当开关S闭合时,电源电压和电路中的电流均不为零。设t=0时,iL=I0,即iL|t=0=I0。由初始条件可以确定出A=■-I0。

则iL=■+(I0-■)e■■,或iL=I0e■■+■(1-e■)。■

这就是该RL串联电路全响应公式。

(三)一阶线性电路暂态分析的一般公式

把上述分析结果列表如下,并从中可以得出一阶线性电路暂态分析的一般公式。

推荐访问: 微分方程 在一 线性 电路 分析