当前位置:无忧公文网 >范文大全 > 征文 > 乌头碱对大鼠粪样代谢谱影响的代谢组学研究

乌头碱对大鼠粪样代谢谱影响的代谢组学研究

时间:2022-04-06 08:39:46 浏览次数:

[摘要] 目的 研究乌头碱对Wistar大鼠急性毒性作用下粪样的代谢谱的变化。 方法 15只雄性Wistar大鼠适应性饲养1周后,随机分为给药组(10只)、对照组(5只),给药组按照2.54 mg/kg的剂量灌胃给予乌头碱,对照组给予同体积饮用水,采集给药6 h后的粪样,处死大鼠后采集心脏、肝脏、肾脏,并计算脏器系数。使用核磁共振技术检测粪便水提物的代谢物谱,应用模式识别技术对积分数据进行正交偏最小方差判别分析(OPLS-DA)及皮尔森相关分析,并进一步对差异代谢物使用SPSS 17.0软件进行Student t检验,使用MATLAB软件做相关系数图。 结果 给药组大鼠的脏器系数相对于对照组出现不同程度的降低,其中心脏、肝脏差异有统计学意义(P < 0.05)。在粪便水提物中,核磁检测到的代谢物包括短链脂肪酸、氨基酸、单糖、三羧酸循环中间体及嘧啶和嘌呤类等40余种代谢产物。统计学分析表明,与对照组大鼠相比,给药组大鼠的粪便水提物中α-氨基戊酸、谷氨酸、苯丙氨酸的含量出现显著性降低,差异有统计学意义(P < 0.05)。由此可见。乌头碱对大鼠肠道菌群产生了毒性作用,使得这些肠道菌群代谢及分解胃肠道食物的能力下降,致使粪样中代谢产物含量发生了变化。结合代谢通路的分析发现,乌头碱通过影响肠道菌群造成了大鼠体内氨基酸及能量代谢的异常,并且也一定程度上造成了主要脏器的损伤。 结论 本文客观地反映了大鼠粪样中代谢物谱图与乌头碱毒性的关系,指明了肠道菌群对整个机体内环境的平衡起到的重要作用。潜在差异代谢物及代谢通路分析表明,建立粪便代谢组学方法对于进一步研究评价药物毒性具有重要意义。

[关键词] 乌头碱;粪样;代谢组学;核磁共振

[中图分类号] R917 [文献标识码] A [文章编号] 1673-7210(2013)05(b)-0018-04

附子(Radix Aconiti Lateralis Preparata)为毛茛科植物乌头(Aconitum Carmichalii Debx.)的子根,其在我国传统中药中被誉为“回阳救逆第一品药”。其药理作用主要包括镇痛、消炎[1-5]、强心、抗心律失常、抗肿瘤、增强免疫力等[6]。但是由于附子治疗窗狭窄,往往在发挥治疗作用的同时伴随有严重的毒副反应,这些常会造成临床上的误用滥用现象。以乌头碱为代表的双酯二萜型乌头类生物碱是附子毒性的主要来源,其毒副作用主要表现为心脏毒性[7-11]与神经毒性[12-13]。

代谢组学是从整体角度研究生物体系受外部刺激而引起的代谢产物的变化规律,现在已经广泛应用于研究药物毒性[14-17]、新药安全性评价[18-19]、疾病诊断[20-22]等领域。粪便代谢物谱也是研究机体应激反应的重要方面,其能客观全面的反映肠道菌群对于食物、疾病及药物代谢的作用[23-25],为药物研究及疾病诊断提供辅助性的生物学信息。我们已经对附子、乌头类生物碱对大鼠血浆、尿液的代谢物谱的毒性作用进行了系统的研究[14-16]。本文主要利用核磁共振(NMR)的代谢组学方法检测大鼠粪样代谢物谱,考察乌头碱急性毒性作用时对大鼠肠道菌群的影响,通过多元统计的模式识别及相关性分析,寻找造成机体代谢紊乱的相关潜在差异代谢物,最终对相关代谢通路进行深入研究。

1 材料与方法

1.1 实验动物及分组

健康雄性Wistar大鼠15只,体重(201.3±5.4)g,清洁级,军事医学科学院实验动物中心提供,合格证号:SCXK-(军)2007-004,在动物房代谢笼中12 h昼夜交替适应性饲养1周,动物自由摄食饮水,温度20~23℃,湿度60%左右。随机分为给药组、对照组,给药组10只,对照组5只。

1.2 试剂与仪器

乌头碱(Aconitine,中国药品生物制品检定所);重水(D2O,美国Norell公司);2,2,3,3,三甲基甲硅烷基丙酸(TSP,加拿大默克公司);戊巴比妥钠(国药化学试剂有限公司);NaH2PO4·2H2O,Na2HPO4·12H2O(国药化学试剂有限公司)。VarianUNITY INOVA 600 MHz超导脉冲傅立叶变换核磁共振谱仪(美国瓦里安公司);Eppendorf 5024离心机(德国Eppendorf公司);QL-901涡旋振荡器(海门市其林贝尔仪器制造有限公司)。

1.3 实验方法

1.3.1 实验用药品的制备 精密称量8.80 mg乌头碱标准品,添加44 mL去离子水和30 μL 36%~38%的浓盐酸,涡旋振荡,得到浓度为0.2 mg/mL的乌头碱溶液,4℃保存备用。

1.3.2 生物样品的采集 动物适应性结束后,给药组按照2.54 mg/kg的剂量灌胃给予乌头碱,对照组灌胃给予同剂量的饮用水,收集给药6 h后的大鼠粪样。然后腹腔注射戊巴比妥钠(3%,1.5 mL/kg)麻醉大鼠,分离心脏、肝脏及肾脏,用生理盐水冲洗,滤纸吸干,称重,并计算脏器系数。最后将生物样品保存在-20℃冰箱中,待用。

1.4 核磁共振数据的采集与预处理

1.5 统计学方法

2 结果

2.1 大鼠行为学观察、体重及脏器系数的变化

2.3 多元统计分析

3 讨论

在实验中,由大鼠的行为学、脏器系数及体重分析可知,乌头碱的摄入直接影响了大鼠心脏、肝脏、肾脏及神经系统的的正常生理功能,进而导致代谢通路及代谢物含量的紊乱,表明乌头碱对于机体具备极强的毒性,这也和之前关于乌头碱毒性的报道吻合[14-16]。

本实验采用的基于核磁共振的代谢组学方法研究了乌头碱对于大鼠粪样中代谢物的影响,客观全面地反映了机体受到应激后的病理生理变化。由大鼠的粪样1H-NMR谱分析可知,α-氨基戊酸、谷氨酸、苯丙氨酸的含量降低,显示乌头碱造成了机体氨基酸代谢的紊乱,在大部分哺乳动物体内,谷氨酸与精氨酸、谷氨酰胺、脯氨酸、天冬氨酸等能经过器官间复杂的新陈代谢可以实现相互转换,文中只出现谷氨酸的含量降低,可能是肠道新陈代谢中出现了相关酶及代谢通路的抑制[35]。谷氨酰氨与谷氨酸、γ-氨基丁酸之间的相互转换在维持脑的兴奋(谷氨酸为主)-抑制系统(γ-氨基丁酸为主)平衡方面发挥重要作用[36-37],谷氨酸含量降低,表明谷氨酰胺向谷氨酸转化的方向出现了障碍,这也与大鼠给药后出现活动量减少,反应迟钝等行为学表现相印证。谷氨酸对于哺乳动物的生长及维持肠道功能也至关重要,这点可能也与实验大鼠的食欲不振有一定的关系。

芳香族氨基酸的酵解通常由肠道中的厌氧菌来完成,其代谢产物为酚和吲哚类化合物,这两类代谢物则分别是致癌辅助剂和结肠癌启动子[38]。实验中出现的苯丙氨酸在乌头碱摄入后的含量急剧降低,可能是大鼠在病理状态下厌氧菌的代谢增强,造成体内毒性物质蓄积,从而使肠道正常的生理功能被破坏。苯丙氨酸也是一些重要的小分子激素合成的前体,其含量的降低,可能会造成肾上腺素、去甲肾上腺素、多巴胺等激素的功能障碍,进而影响机体正常的新陈代谢[39]。此外,氨基酸含量的降低,也可能是肠道菌群数量受到乌头碱摄入的影响,菌群数量的减少造成了蛋白质降解及氨基酸合成的降低,这在已有的一些报道中得到了证实[40-41]。

肠道菌群不仅参与食物的消化、吸收,而且在维持机体应激状态下的肠道功能正常方面也是至关重要的。因此,粪便代谢组学为本研究提供了有关宿主、饮食及共生的肠道微生物之间相互作用的生物学信息,为相关疾病的诊断提供了辅助性的工具。

本实验的结果分析表明,乌头碱的摄入不仅造成了大鼠心、肝、肾等脏器损伤,也导致了氨基酸、能量等代谢通路的紊乱,客观全面地反映了乌头碱对于粪便代谢物谱的影响。通过粪便代谢物谱的分析为相关学者认识肠道微生物及其在人体代谢中的特殊作用打开了窗口,也为进一步研究乌头类生物碱及中药毒性提供了新途径、新思路。

[参考文献]

[1] Haibo S,Chongchu Z,Yanzhong L, et al. Anti-inflammatory Effect of Aconitines [J]. China Journal of Chinese Materia Medica,1990,3:022.

[2] Luo B,Kobayashi S,Kimura I,et al. Inhibitory effects on angiogenesis and pouch fluid exudation by aconite alkaloids in adjuvant‐induced inflammation of the mouse [J]. Phytotherapy Research,2006,5:231-233.

[3] Murayama M,Mori T,Bando H,et al. Studies on the constituents of Aconitum species. IX. The pharmacological properties of pyro-type aconitine alkaloids, components of processed aconite powder‘Kako-bushi-matsu’: analgesic,antiinflammatory and acute toxic activities[J]. Journal of Ethnopharmacology,1991,35:159-164.

[4] Murayama M,Namiki Y. Pharmacological study of kako-bushi-matsu: analgesic action and acute toxicity. Nihon yakurigaku zasshi[J]. Folia pharmacologica Japonica,1989,94:309.

[5] Wang ZW,Zhang AG,Yuan Q,et al. Pharmacological Study of Musk-Aconite-Earthworm Pill on Anti-inflammatory and Analgesic [J]. Lishizhen Medicine and Materia Medica Research,2007:3.

[6] Bossaert BL,Handley U,Marsden U,et al. The effects of Aconitum alkaloids on the central nervous system[J]. Progress in neurobiology, 1998,56:211-235.

[7] Fu M,Wu M,Wang JF,et al. Disruption of the intracellular Ca2+ homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes[J]. Biochemical and biophysical research communications,2007,354:929-936.

[8] Fu M,Li RX,Fan L,et al. Sarcoplasmic reticulum Ca2+ release channel ryanodine receptor (RyR2) plays a crucial role in aconitine-induced arrhythmias[J]. Biochemical pharmacology,2008,75:2147-2156.

[9] Yoshioka N,Gonmori K,Tagashira A,et al. A case of aconitine poisoning with analysis of aconitine alkaloids by GC/SIM[J]. Forensic science international,1996,81:117-123.

[10] Wada K,Nihira M,Hayakawa H,et al. Effects of long-term administrations of aconitine on electrocardiogram and tissue concentrations of aconitine and its metabolites in mice [J]. Forensic science international, 2005,148:21-29.

[11] Weijters B,Verbunt RJ,Hoogsteen J,et al. Salade malade: malignant ventricular arrhythmias due to an accidental intoxication with Aconitum napellus[J]. Netherlands Heart Journal,2008,16:96-99.

[12] Zhao Y,Bu Q,Zhou Y,et al. Mechanism study of Aconitum-induced neurotoxicity in PC12 cells: Involvement of dopamine release and oxidative damage [J]. Neurotoxicology,2010,31:752-757.

[13] Ameri A. The effects of Aconitum alkaloids on the central nervous system [J]. Progress in neurobiology,1998,56:211-235.

[14] Li L,Sun B,Zhang Q,et al. Metabonomic study on the toxicity of Hei-Shun-Pian, the processed lateral root of Aconitum carmichaelii Debx. (Ranunculaceae) [J]. Journal of Ethnopharmacology,2008,116:561-568.

[15] Sun B,Li L,Wu S,et al. Metabolomic analysis of biofluids from rats treated with Aconitum alkaloids using nuclear magnetic resonance and gas chromatography/time-of-flight mass spectrometry[J]. Analytical Biochemistry,2009,395:125-133.

[16] Sun B,Wu S,Li L,et al. A metabolomic analysis of the toxicity ofAconitumsp. alkaloids in rats using gas chromatography/mass spectrometry [J]. Rapid Communications in Mass Spectrometry,2009,23:1221-1228.

[17] Kim TH,Ahn MY,Lim HJ,et al. Evaluation of metabolomic profiling against renal toxicity in Sprague-Dawley rats treated with melamine and cyanuric acid [J]. Archives of Toxicology,2012,1:1-13.

[18] Shi C,Cao AM,Sheng HZ,et al. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats[J]. Toxicology letters,2007,173:161-167.

[19] Wang Q,Jiang Y,Wu C,et al. Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine,blood plasma, and liver extracts [J]. Toxicology and applied pharmacology,2006,215:71-82.

[20] Zhang Z,Qiu Y,Hua Y,et al. Serum and urinary metabonomic study of human osteosarcoma[J]. Journal of proteome research,2010,9:4861-4868.

[21] Sun L,Hu W,Liu Q,et al. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients [J]. Journal of proteome research,2012,11:2937-2946.

[22] Stephens NS,Siffledeen J,Su X,et al. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy[J]. Journal of Crohn"s and Colitis,2012,7:42-48.

[23] Clayton TA,Baker D,Lindon JC,et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism[J]. Proceedings of the National Academy of Sciences,2009,106:14728-14733.

[24] Samuel BS,Shaito A,Motoike T,et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41[J]. Proceedings of the National Academy of Sciences,2008,105:16767-16772.

[25] Duncan SH,Belenguer A,Holtrop G,et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces [J]. Applied and environmental microbiology,2007,73:1073-1078.

[26] Savorani F,Tomasi G,Engelsen SB. A versatile tool for the rapid alignment of 1D NMR spectra[J]. Journal of Magnetic Resonance,2010,202:190-202.

[27] Bylesj M,Eriksson D,Sjdin A,et al. Orthogonal projections to latent structures as a strategy for microarray data normalization[J]. BMC bioinformatics,2007,8:207.

[28] Cloarec O,Dumas ME,Trygg J,et al. Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies[J]. Analytical chemistry,2005,77:517-526.

[29] Clayton TA,Lindon JC,Cloarec O,et al. Pharmaco-metabonomic phenotyping and personalized drug treatment [J]. Nature,2006,440:1073-1077.

[30] Shiryaeva L,Antti H,Schrder WP,et al. Pair-wise multicomparison and OPLS analyses of cold-acclimation phases in Siberian spruce [J]. Metabolomics,2012,1:1-8.

[31] Wishart DS,Knox C,Guo AC,et al. HMDB: a knowledgebase for the human metabolome[J]. Nucleic acids research,2009,37:603-610.

[32] Wishart DS,Tzur D,Knox C,et al. HMDB: the human metabolome database [J]. Nucleic acids research,2007,35:521-526.

[33] Saric J,Wang Y,Li J,et al. Species variation in the fecal metabolome gives insight into differential gastrointestinal function [J]. Journal of proteome research,2007,7:352-360.

[34] Wu J,An Y,Yao J,et al. An optimised sample preparation method for NMR-based faecal metabonomic analysis[J]. The Analyst,2010,135:1023.

[35] Wu G,Bazer FW,Davis TA,et al. Important roles for the arginine family of amino acids in swine nutrition and production [J]. Livestock science,2007,112:8-22.

[36] Benítez DP,Miranda CL,Mendoza BR,et al. Prenatal and postnatal contents of amino acid neurotransmitters in mouse parietal cortex [J]. Developmental neuroscience,2003,25:366-374.

[37] Benítez DP,Miranda CL,Pea CZ,et al. Histotypic mouse parietal cortex cultures: excitation/inhibition ratio and ultrastructural analysis [J]. Journal of neuroscience methods,2006,156:64-70.

[38] Nowak A,Libudzisz Z. Influence of phenol,p-cresol and indole on growth and survival of intestinal lactic acid bacteria[J]. Anaerobe,2006,12:80-84.

[39] Wu G. Amino acids: metabolism,functions,and nutrition[J]. Amino acids,2009,37:1-17.

[40] Yap IK,Li JV,Saric J,et al. Metabonomic and microbiological analysis of the dynamic effect of vancomycin-induced gut microbiota modification in the mouse [J]. Journal of proteome research,2008,7:3718-3728.

[41] Nanda NS,Balamurugan R,Jayakanthan K,et al. Probiotic administration alters the gut flora and attenuates colitis in mice administered dextran sodium sulfate [J]. Journal of gastroenterology and hepatology, 2008,23:1834-1839.

(收稿日期:2013-03-04 本文编辑:卫 轲)

推荐访问: 代谢 乌头 大鼠 影响 研究