当前位置:无忧公文网 >范文大全 > 征文 > 智能传感器技术问题研究

智能传感器技术问题研究

时间:2022-05-02 19:35:02 浏览次数:

【摘 要】智能传感器已成为当今传感器技术的一个主要发展方向。智能传感器首先借助于其传感单元,感知待测量,并将之转换成相应的电信号。该信号通过放大、滤波等调理后,经过 A/D 转换,接着基于应用算法进行信号处理,获得待测量大小等相关信息。然后,将分析结果保存起来,通过接口将它们交给现场用户或借助于通信将之告知给系统或上位机等。由此可知,智能传感器主要完成信号感知与调理、信号处理和通信三大功能。本文将从这三方面阐述智能传感器技术的发展现状。

【关键词】智能传感器;信号调理;信号处理;通信

1.信号感知与调理技术

智能传感器一般通过信号感知模块中的敏感元件将待测量最终转换成模拟电压信号。目前能感知的量很多,有物体位移、速度、加速度等运动量,温度、湿度、压力等过程量,光强、波长、偏振度等光的特性量,流量、浓度、pH 值等液体特性量,成分、浓度等气体特性量,葡萄糖、尿素、维生素等化学成分等。智能传感器中的敏感元件有些如传统传感器一样单个存在的,有些借助于微机械技术、硅集成等技术以阵列方式存在,以提高测试精度与可靠性,有些将多种敏感元件以一定的方式复合分布在感知模块中以感知多种待测量感知模块出来的信号一般含有来自于外界的干扰,需要“净化”处理以确保测试精度。另外,该信号一般比较小,有时甚至非常微弱,通常需要利用电桥等电路进行信号放大。这些功能一般通过具有滤波、放大等功能的,如测试放大器等调理电路予以实现。感知模块与调理电路有时分开放置,有时集成在一个模块上。

2.信号处理技术

2.1信号感知(粗信号处理)

有些待测量可根据其定义利用单个调理信号直接获得,如温度、位移、交流电流有效值等;有些待测量则需要多种调理信号,如交流电力的视在功率、有功功率等性能指标,本文称这些方法为定义法。还有些待测量只能通过与之相关的各物理量的综合分析才能便捷、可靠地测出,如混合气体的成分和各成分的浓度、人体摔倒等,本文称之为综合法。研究表明,利用定义法可获得的很多待测量,借助于数字信号处理技术也可以获知,如交流电力电压/电流的有效值、交流电力的功率等,本文称之为分析法。综合法、分析法则充分体现了智能传感器的特质。基于数据融合技术,综合法主要用于传统方法获取比较困难、精度不高、测试不可靠,甚至不能测试出待测量的信号。例如: 对于一氧化碳、氢气、甲烷、乙炔等有毒、有害、可燃性气体的种类与浓度,传统的色谱法测试不连续、繁琐、时间长,单一响应快的气敏元件其选择性能差。为此,人们探索出了采用气敏阵列理论的多种综合法较好地克服了这些问题。气敏阵列理论的基本思想就是利用多种能较好感知不同气体的气敏元件构成阵列,借助于模式识别理论计算出混合气体中气体的成分和各种气体的浓度。又如,摔倒是老年人身体健康的一个主要危害,单个被动式红外传感器或具有通信与运动探测功能的腕式穿戴设备或照相机均难于完成人体摔倒的自动、可靠侦测。人们利用红外集成热图像传感器,综合应用运动识别、运动估计、运动跟踪、基于目标的推理、分类等技术,较好地实现了对老年人摔倒的自动、可靠侦测。

2.2信号认知(细信号处理)

粗信号处理的精度与稳定性常受到如偏移误差、增益误差、非线性误差以及环境等方面的影响,智能传感器需通过细信号处理来认识其“健康”状态,“弥补”其分析偏差,确保测试的可靠性、精确性。细信号处理通常包括自诊断、自校正、自补偿。

自诊断用于检测智能传感器是否“健康”: 各组成部分能否正常工作,系统参数是否配置合适,整个系统能否正常进行测试、通信等。它通常利用人工智能等理论方法,例如: 一种基于知识库或专家系统的智能传感器自诊断方法。自校正用于智能传感器各组成部分状态、特征参数及系统参数的校正。自补偿则用于补偿待测量的非线性或因温度、环境变化等造成的测试误差。针对智能传感器的特性易受多种因素影响的情况,一种神经网络及其收敛快、精度高的训练方法。为减少自校正点和自校正时间,人们在充分考虑调理信号概率密度函数的基础上,利用循序多项式插值探索出了一种适合于智能传感器的自适应自校正算法。

3.通信技术

IEEE 1451 系列标准乃智能传感器通用通信标准,该标准支持多种现场总线、以太网等现有的各种网络技术。IEEE 1451 第七部分则规定了智能传感器与目前正蓬勃兴起的物联网间的通信接口标准。人们在这方面开展了大量工作并取得了丰硕成果。例如: 人们研究出了一种基于IEEE 1451 标准的智能传感器结构,提出了即插即用 Web智能传感器的一种基于 Web 服务方法,实现了一种基于CAN 协议的温度智能传感器,探索出了一种智能传感器无线网络组织结构协议和一种基于Zig Bee 无线通信技术的智能传感器无线接口设计方案等。通信模块以软件硬件方式实现,它一般与智能传感器的信号处理模块集成在一起。

实现智能传感器目前主要有 3 种方式。一种方式是将信号感知与调理模块、信号处理模块、通信模块等通过导线等方式组合在一起即可,这种实现方式适合于智能化如化工厂等用户原有传统传感器的场合;另一种方式乃利用微机械加工、微电子加工等技术将这些模块集成在一片芯片上,实现了智能传感器的微型化。这是商品化智能传感器的最佳选择,这种智能传感器使用方便、性能稳定、可靠。还有一种方式乃将这些模块集成在两片或多片芯片上,然后由这些芯片构成智能传感器,这是目前商品化智能传感器的一种较好选择。

4.发展方向

智能传感器将向着精度与可靠性高、品种多、功能丰富、复合型、集成化与微型化等方向发展。研究新型敏感材料、探索新颖感知方法、敏感元件的阵列化与复合化将成为智能传感器感知技术未来发展的主要方向。新的敏感材料、感知方法意味着感知范围的扩大或感知可选择性的增强。敏感元件的阵列化乃智能传感器高精度、高可靠性的必要源泉。立体分布、微加工的集成化多种敏感元件为智能传感器的多功能、复合型提供坚实的物质基础。以定义法、基于数据融合技术与模式识别理论的综合法为代表的粗信号处理方法和利用专家系统、神经网络、自适应等理论的细信号处理方法目前主要研究的是如何精确、可靠地实现智能传感器的“感知”、“认知”这两大信号处理功能。分析法则研究了让智能传感器如何“瘦”系统、低成本地去完成其“感知”功能。分析法比较充分地体现了智能传感器中信号处理的能力,它有利于智能传感器的集成化、微型化。智能传感器的商品化需求将驱使分析法快速发展,并让其从“感知”推广至“认知”。随着计算机技术、控制技术、数字信号处理技术的发展,智能传感器的信号处理将变得日益精密、可靠、健壮。

5.结论

本文首先介绍了智能传感器的基本结构,分析了其功能构成。然后根据其功能组成,从智能传感器的信号感知与调理技术、包含粗信号处理与细信号处理并实现“感知”与“认知”功能的信号处理技术、通信技术 3 个方面详细阐述了智能传感器技术的发展现状。最后从这 3 个方面展望了智能传感器技术的发展前景,指出高性能、多种类、多功能、复合型、集成化、微型化、网络化乃智能传感器未来的发展方向。

【参考文献】

[1]张鸣,李赟.智能传感器功能综述[J].无线互联科技,2014(04).

[2]赵丹,肖继学,刘一.智能传感器技术综述[J].传感器与微系统,2014(09).

推荐访问: 传感器 智能 研究 技术