当前位置:无忧公文网 >范文大全 > 征文 > 软件无线电技术在卫星系统中的应用

软件无线电技术在卫星系统中的应用

时间:2022-03-18 08:11:10 浏览次数:

软件无线电技术

软件无线电是近几年来提出的一种实现无线通信的新概念和体制。它的核心是将宽带ND和D/A变换器尽可能靠近天线,而电台功能尽可能地采用软件进行定义。软件无线电把硬件作为无线通信的基本平台,对于无线通信功能尽可能用软件来实现。这样,无线通信系统具有很好的通用性、灵活性,使系统互联和升级变得非常方便,这很可能使软件无线电成为继模拟通信到数字通信和固定通信到移动通信之后的无线通信领域的第三次突破。

以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的软件无线电技术自从提出以来,便引起了包括军事通信、个人移动通信、微电子以及计算机等电子领域的特别关注和广泛兴趣。尤其是在最近几年突飞猛进的发展成长,逐渐壮大,更加使得人们普遍认为软件无线电技术将促进无线通信,甚至整个无线电领域产生重大变革,并由此推动电子信息技术的快速发展,最终在全世界范围内形成巨大的软件无线电产业市场,带来巨大的经济效益,推动社会和技术进步。

软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置的应用软件来实现各种无线电功能的设计新思路。

通信的需求是软件无线电进步与发展的巨大驱动力。它是解决目前无线通信系统多标准、多模式兼容工作以及相互操作性和多系统共享频率资源等问题的最好途径。

软件无线电技术的特点

1、具有完全可编程的特性,包括可编程的天线波段、信道接入方式、信道调制解调、数据速率大小等,通过软件提供指令,实现控制和操作、管理和维护功能;

2、系统结构通用,功能实现灵活,改进和更新也很方便快捷。高速A/D/A实为一个标准接口,其作用是将RF/IF部分和通用的数字/软件部分连接起来。只要它们的带宽和处理能力满足系统要求,都具有很好的通用性;

3、使得不同系统之间相互操作成为可能;

4、复用的优势,系统结构的一致性使得设计的模块化思想能很好地实现,并且这些模块具有良好的通用性,能在不同的系统及其升级时很容易地复用;

5、在软件无线电中,软件的生存期决定了通信系统的生存期。一般地,软件开发的周期相对于硬件要短,开发费用要低;

6、由于系统的主要功能都由软件实现,因此可方便地采用各种新的信号处理手段提高抗干扰性能。其他诸如系统频带监控、在线改变信号调制方式等功能的实现也成为可能。

软件无线电在卫星通信中的应用

通信卫星主要由天线分系统、通信分系统、电源分系统、控制分系统等部分组成。其中,通信分系统主要由射频部分和转发器等组成。射频部分包括指令检测、遥控设备和频率调制、解调设备,主要用来实现对射频的发射、接收、调制和解调。目前,它的调制模式、多址方式、编码格式等一般均是固定不变的。如果采用软件无线电技术,那么就可以通过软件随时改变调制模式、多址方式、编码格式等,从而大大提高其灵活性以及抗干扰的能力。同理,在处理转发器中也完全可以应用软件无线电技术,来完成宽带的A/D及D/A转换、调制解调以及编码。

低轨微型卫星通信系统可以提供全球性实时话音/数据通信和非实时的S&F业务。由于它已经成为卫星通信系统的一个重要组成部分和实现全球个人通信的重要手段,所以这里选举它为典型代表来说明软件无线电技术在卫星通信系统中的应用。将软件无线电台结构的概念应用到低轨微型卫星通信系统中,将会很好地解决如不同系统的兼容性,互联互通及综合应用等问题,促使微型卫星通信系统的发展,为用户提供更为灵活和方便的通信服务。

1、用软件无线电技术解决微型卫星通信系统的兼容性问题

近年来,各种各样的移动卫星通信系统纷纷涌现出来,其中,中低轨系统大都采用小型卫星。这些系统分别提供全球性和区域性的以话音为主的移动卫星通信业务。由于它们在通信体制、网络组成、系统管理等方面互不相同,各系统内的用户终端不能直接访问其它系统。目前只有通过信关和网关来实现不同卫星系统之间的互连互通,但这并不是一种特别有效的解决方法,随着新系统的不断涌现,会使终端兼容性等问题日益严重。利用小型卫星提供业务的系统也存在着终端兼容的要求,这一情况是由两方面的因素造成的:

(1)为了充分利用各小型卫星通信系统业务的能力,以使其运营费用进一步降低,需要卫星能够为不同的系统用户提供服务,同时用户也能方便地接入各系统。

(2)为了降低信息的传输时延,S&F业务微型卫星需要借助与其它系统,如地面网络、同步卫星通信系统等来加速其信息的传递。同时卫星通信系统作为对地面通信网重要的支持和不可缺少的补充,其和地面通信网的综合应用问题也提出来了,目前所采用的双模式手机只能达到两种不同系统的综合应用要求。

由于软件无线电台的功能完全由软件定义,可以程控,所以只要在处理能力、采样速度等方面允许的条件下,就能够利用软件无线电台对输入信号的调制模式、多址方式、编码格式进行自动识别和解调,实现信息的正确接收;同时软件无线电台还可根据需要选用适当的特定的通信体制与特定系统进行通信。软件无线电技术利用可编程数字下变频在基带完成信道选取,通过基带处理的软件模块不同来兼容不同的系统。因此,只有软件无线电技术才能在严格意义上圆满的解决系统兼容和综合利用问题。

2、采用软件无线电技术将有利于微型卫星通信技术的更新

卫星通信系统与地面系统的另一个重要差别是:卫星一旦进入运行轨道,对卫星的硬件部分无法进行改动,因此由星载硬件设备决定的技术体制就无法更新。同时微型卫星通信的在轨寿命可达3-5年,甚至更长(因为许多微型卫星采用被动姿态控制方式)。这将严重制约着新技术在卫星通信领域内的及时运用。

利用软件无线电技术的基本思想,赋予微型通信卫星星上处理以新的内涵。将微型通信卫星全部或大部分的通信功能由软件定义,并在设计时考虑到一定的处理冗余度。那么当需要对微型卫星星载通信子系统的某些环节,如调制/解调技术、多普勒频移校正、成形滤波等进行改进,只需要对其中的部分软件进行在轨重新加载,便可以完成原来所无法实现的卫星在轨技术更新,从而达到延长卫星技术寿命的目的。国外在这方面进行了有益的尝试,如Vosat-3&5、Posat-1都进行了具有软件无线电雏形的在轨卫星通信体制更新试验,证明在轨卫星通信体制的更新是完全可能的。按照软件无线电的思想将会出现完全依赖于软件定义的新型微型通信卫星,其

星体具有相同或相似的硬件结构,而根据软件的不同将担负不同的使命。

3、现阶段实施方案的设想

虽然软件无线电技术在微型卫星通信中有着良好的应用前景,但是由于受处理器件能力、处理技术等方面因素的限制,在现阶段尚不能完全按照标准软件无线电台结构建立一套微型卫星通信系统。然而,从另一方面看,既然软件无线电技术的优越性已经被业内人士普遍认可,现今只是在具体实施上遇到些困难,相信将来必定会随着技术的进步而逐步得到解决。

在目前的技术条件下,可以将中频以下的功能由软件来实现,而保留现有的射频部分或采用可更换的射频模块的方法来构造具有部分软件无线电特色的微型卫星通信系统。这一设计思想已在美国的Speak easy II(易通话II)无线电台中得到了实践,Speak easy II可以在程序的控制下与现在使用的15种无线电台互通。根据这一思想,构成的试验性低轨微型通信卫星子系统的框图如图1所示。用户终端的结构框图如图2所示。

软件无线电在卫星测控中的应用

卫星测控系统一般由跟踪分系统、遥测分系统和遥控分系统组成。目前,我国卫星测控设备都是由传统的硬件组成,功能固定,而且各类卫星测控系统的工作频率、调制体制、编码体制和测距体制各不相同,各种卫星之间测控信道也不能相互通用,这样无疑加重了研制负担,造成资金浪费。针对这一问题,国内外正在利用高速A/D、DSP、高速并行总线、计算机技术以及软件技术,对测控信道和处理终端进行全数字化和软件化研究开发,并且已经取得显著成绩。现今,该领域依然继续朝着综合化、数字化、软件化的方向努力拓展迈进,而未来最为理想的解决办法就是采用软件无线电技术。

在卫星测控中,由于星上测控设备受到重量、体积、功耗和射频频率使用等多方面条件因素指标的限制,因此通常采用多个副载波调制一个载波的系统,这些副载波可以是单一的正弦波,也可以是已调副载波。如果射频频率选在S波段,一般便称之为S波段测控系统。与我国中、低轨道卫星原来使用的超短波体制相比,S波段统一测控系统有着明显的优点,它将是国内中、低轨道卫星测控系统采用的主要方式。于是下面以S波段为例对星载测控信道加以分析。

1、测控系统引入软件无线电技术的优势

测控系统设计首先要进行信道设计,根据使用要求选择系统的工作频率、调制体制和基带信号,并进行信道功率分配以及副载波频率干扰计算等,以便确定可靠完成信息传输的最佳方式。由于各种衰减和噪声不同程度的影响是客观存在的,不同的卫星中,调制方式以及调制参数常会有不同的选择,引入软件无线电技术,会产生下列优点:

(1)在设计的同一硬件平台上,配置不同的软件,即可实现不同的具体信道设备。这样不仅能够加快研制进度,而且还可以节约大量资金,避免不必要的浪费。

(2)对于卫星在轨运行期间,使得通过先进的遥控手段实现系统动态配置更新成为可能。

2、测控信道软件化应按阶段分步骤实施

尽管利用软件无线电技术有上述优点,但是,由于软件无线电技术是一个新兴的课题,许多体系结构仍旧处于不稳定的变动之中并且受到DSP、ND等器件性能的制约,所以当前要立刻全面实现理想的软件无线电设计还有困难。比较现实的测控信道软件化应该按阶段分步骤实施:

(1)首先,对传统体制的模拟微波统一测控信道进行数字化、软件化。传统体制的微波统一测控信道,传输信号为遥控、遥测和测距信号,一般带宽较窄,接收机在中频可以采用带通采样。

(2)其次,在测控信道软件化过程中引入新型的测控体制,如扩频码分多址与微波统一测控等,进而实现测控信道与测控终端综合化、软件化设计。

(3)最后,随着DSP、FPGA等数字电路的飞速发展,宽带的数据和跟踪测控信号按照扩频码分多址方式要想实现统一载波测控信道的软件无线电设计也将成为可能。

3、现阶段实施方案的设想

下面针对现阶段的具体情况,简单介绍一种对传统体制的模拟微波测控信道数字化、软件化的方案设想。采用软件无线电思想的测控信道原理设计框图如图3所示。图中,天线、上/下变频器、带通滤波器等射频部件可设计几种通用的标准化产品,由于测控信号一般为窄带信号,在中频可用带通采样,这样能够把中频中的带通信号变换为较低中频的基带信号,而不必使用可编程的数字下变频器,但A/D转换器的模拟输入带宽应高于被采样的中频信号的最高频率。为了使产品具有良好的适应性,ND的采样频率最好是能够根据情况变化的不同进行随时重新配置。另外,对于宽带测控信号则要采用下变频器。

展望

未来的无线通信系统将是多制式、多模式的通信系统,可以提供包括多媒体在内的多种服务类型。软件无线电以其强大的可配置能力和可编程能力将成为未来通信系统的首选。软件无线电的技术发展将大致可分为硬件、软件两个方面。

为了支持多制式、多模式通信的空中接口,软件无线电的硬件需要提供一个可配置和可编程的硬件平台。其研究重点将集中在可重新配置的射频前端以及数字信号和模拟信号的转换上,对于移动终端、系统的功耗、时钟分配也将是系统的研究重点。

软件无线电的软件技术要提供一个可以支持多种开发环境的软件平台。其研究重点将集中在API、中间件和可配置的管理模块。一方面是建立一种适合手持式设备使用的操作系统,另一方面是可实现即插即用的核。利用即插即用的核可以使系统软、硬件的增减和更新变得灵活而简单。就系统功能而言,因为软件无线电具有良好的灵活性,其提供的功能将不仅仅限于实现基本的通信功能,而且还可以实现一些智能化的应用,使得软件无线电可以感知通信环境的变化,智能地下载相应的软件,调整系统的参数,在保证用户通信质量的前提下更加有效地使用系统的资源。可以预见,随着微电子、计算机、数字信号处理及天线技术的发展,软件无线电技术必将成为27世纪无线电通信领域的核心技术。

推荐访问: 无线电 系统中的应用 技术 软件 卫星